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Abstract
Excluded volume effects in the end-to-end distances of two-generation dendritic
polymers, with various numbers of branches and branch lengths, are determined
by calculating the expansion factors of the branches to the order ε = 4 – d.
The general solution correctly recovers known results of materials with fewer
junctions and generations, such as star, brush and block co-polymers. This
general solution also predicts the behaviors of three-junction TTT and HH
polymers containing equal length branches. Pivot Monte Carlo simulations
on the last two classes of polymers compare well with the first-order ε

renormalization group results.

PACS numbers: 02.70.Uu, 05.10Cc, 05.40Jc, 36.20.Ey, 36.20.Hb

1. Introduction

Complex polymeric structures are important as nanomaterials because of their large surface
area and many terminal groups. These two factors lead to enhanced reactivity. Big interior
cavities make these polymers useful as carriers of small molecules. Since the permeability
of the flexible polymeric structures can be altered by changing the thermodynamic conditions
[1], these small molecules can be captured or released in a controlled manner.

The general polymer structure we are studying in this work is the one shown in figure 1.
It is a first-generation dendritic polymer having as its zeroth interior generation a three-branch
star with three different branches of lengths a, b and c, respectively. At the ends of each of the
branches, a second exterior generation is formed by attaching another set of stars each with fa,
fb or fc branches and branch lengths Na, Nb and Nc, respectively. Many interesting polymer
structures can be obtained from this general form. When the values of c, b, Nc and Nb are 0,
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Figure 1. A dendritic polymer with two generations. The inert generation is a three-branch star
with branch lengths a, b and c. Stars with fa, fb and fc extra branches (of lengths Na, Nb and Nc,
respectively) emerge from the ends of the inert generation structure.

Figure 2. The TTT and HH polymers with equal branch length N. Branches 1 and 2 represent the
side and central external branches, respectively, whereas branch 3 represents an internal branch.

and a = 0 or a = Na, one has a simple normal star with either fa or fa + 1 branches. A
block co-polymer with lengths a and b for the two blocks is found when the values of c, Nc,
Na and Nb are set to 0. Brush polymers with two-junction points are recovered when c and
Nc = 0. Brush polymers behave as double stars made by joining the ends of two branches.
The simplest of these are H-comb polymers which are determined from the general structure
when b and c = 0, Nc = 0 and fa = fb = 2 while fc = 0. Also of special interest, because they
are the two simplest three-junction polymers, are the TTT and HH polymers shown in figure 2.
These polymers are built on double stars by incorporating linear chains at the junction point.
These polymers can also easily be obtained from the general structure given in figure 1: TTT
polymers when c = 0, fa = fb = 2 and fc = 1, or HH polymers when fc = 2.

In this paper we report on our renormalization group calculation for the general structure
in figure 1, as well as Monte Carlo (MC) simulations of TTT and HH polymers with equal
branch lengths, a = b = Na = Nb = Nc = N. The good agreement between the analytical results
and the computational findings extends our understanding of the effects of large functionality
on the conformational properties of complex macromolecules. The major property of interest
in this work is the ratio, r, of the relative sizes of the internal and external branches. For
the most general case of the structure of figure 1 there are six different kinds of branches,
with lengths equal to a, b and c for the interior, and Na, Nb and Nc for the exterior branches
respectively. The sizes of these various parts of the macromolecule reveal the effects on the
specific parts of the chain and their contributions to the total macroscopic behavior. These
sizes are easier to evaluate analytically than the radius of gyration. Moreover, the radius of
gyration is the sum of all average distances between all pairs of chain points and only describes
the overall size of the chain, without revealing the details of the interaction between different
chain pieces.
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2. Renormalization group calculation of the mean-square end-to-end distances of the
branches

In the continuous line model of a chain counting the pair interactions between monomeric
units corresponds to a double integration over all the points i and j of the positions of the units
on the chain. According to the Gaussian model, the probability distribution Po of any segment
of length N′ having its two ends separated by R′ (when the spacing between individual chain
units is of length � = 1) is given in the spatial dimension d by

Po =
(

d

2π

)d/2

exp

[
−dR′2

2N ′

]
. (1)

The mean-square end-to-end distance, 〈R2〉, of a specific part of the chain is equal to

〈R2〉 =
〈
Po exp[−u

∫
di

∫
djδ[r(i) − r(j)]]R2

〉
〈
Po exp[−u

∫
di

∫
djδ[r(i) − r(j)]]

〉 , (2)

which to first order in the excluded volume parameter u for any polymeric structure is equivalent
to the difference of the contributions from the numerator and denominator. It is equal to

〈 〈 〈〈 〈〈

×

(3)

where L is the length of the loop formed between the two interacting points i and j with a
probability represented by the second diagram of equation (3), equal to (d/2πL)d/2. The first
diagram represents the chain segment of length N starting at an origin, passing through the
vector position Rx on the loop, and ending at R. k is the length of the common part 0Rx of
the segment 0R under study. After performing the Rx and R integrations of equation (3) in all
space and absorbing a (d/2π )d/2 term into u, one obtains an expression of the form [2]

〈R2〉 = N + uF, F =
∫

di

∫
dj

k2

Ld/2+1
. (4)

The excluded volume parameter u expresses the intensity of the interactions. It is positive
when there is a net repulsion and negative when there is a net attraction between the polymeric
points. We have previously shown that first-order calculations at the critical dimensionality,
d = 4, yield excluded volume effects to order ε = 4 – d by means of the value of the excluded
volume parameter u∗ = ε/16 at the fixed point [3]. In the complex polymeric structure of
figure 1 all interactions can be written in terms of three functions describing excluded volume
effects in the same or between two different branches. At d = 4 the three necessary functions
are given by

2

03
0 0

( ) ( )
( ) 2 lim 2

NNNN

o
0

k N L N L
F N di dj dL dL

L L Lλ→
λ

− −= = = =∫ ∫ ∫ ∫

2 [ln( ) 1 0( / )
N

N= − + λ Ν
λ (5a)

3



J. Phys. A: Math. Theor. 43 (2010) 185002 M Kosmas et al

22

1 33
0 0 0 0

2 2

[ , , ] 2 2
( )

( ) ( )
2( ) ln( ) 2 ln( )

y yN Nk i
F N x y di dj di dj

L i j x

N x y N x x y x
x yxy x y x N x y N x

= = =
+ +

+ + + ++ − + − −+ + + +

∫ ∫ ∫ ∫

=
(5b)

22

2 33
0 0 0 0

2

[ , , , ] 2 2
( )

1 1 1 1

y yk N
F N x y di dj di dj

L i j N x

N
N x y N x y N x N x

ω ω

= ω = =
+ + +

− − ++ + + ω + + + + ω +

∫ ∫ ∫ ∫

= .

(5c)

Among these three functions only Fo represents intra-segmental excluded volume effects
(equation (5a)). In this case k = L and the use of the small length cutoff parameter λ is
necessary for the existence of this excluded volume contribution and the determination of
the known critical exponents. This is achieved by means of renormalization group theory
which employs renormalized quantities like N/λ at the fixed point value u∗ = ε/16, absorbing
actually the cutoff parameter λ in the chain length N. At the fixed point, not only are proper
exponents such as the exponent ν = 1

2 + ε/16 produced at the infinite molecular weight limit
but also other terms independent of N which still contribute to the values of the corresponding
properties. In the ratios r evaluated below, the difference of the numerator and the denominator
contributions in N cancels, leaving the remaining quantities to determine the effects of the
parameters on the ratios. F1 describes the excluded volume effects on a branch of length N
from points on another branch of length y when the two branches are joined by a branch of
length x. Finally, the effects from the interacting points of two different branches of lengths y
and ω when they include the branch of length N are given by F2 where the ω branch is joined
to the first end of the N segment and the second y branch is at a distance x from the second
end. The employment of the F functions is equivalent to the methods used earlier involving
the values of all different diagrams. The recovery of previous results for special classes of
macromolecules by the present work with the F functions, as shown in equations (7)–(10),
proves the equivalence of the two procedures. Using these three functions, the mean-square
end-to-end distances of the exterior branches have the following form:〈
R2

Na

〉 = Na + uF,

F = Fo(Na) + (fa − 1)F1(Na, 0, Na) + F1(Na, 0, a) + F1(Na, a, b)

+ F1(Na, a, c) + fbF1(Na, a + b,Nb) + fcF1(Na, a + c,Nc), (6a)

whereas the interior branches have the form〈
R2

a

〉 = a + uF ′,
F ′ = Fo(a) + faF1(a, 0, Na) + F1(a, 0, b) + F1(a, 0, c) + fbF1(a, b,Nb) + fcF1(a, c,Nc)

+ faF2(a, 0, b,Na) + faF2(a, 0, c,Na) + fafbF2(a, b,Nb,Na)

+ fafcF2(a, c,Nc,Na). (6b)

The expressions of the a sub-dendron are symmetric to the interchange of the b and c indices
as expected. The other mean-square end-to-end distances of the b and c sub-dendrons can be
obtained from these expressions by a cyclic change of the letters.
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Known results are easily recovered from these general expressions. The mean-square
end-to-end distance of a single branch of a star with f branches, each of length N, is given by
[4, 5] 〈

R2
〉 = N

{
1 + 2u

[
ln N − 1 + (f − 1)

(
ln 2 − 1

4

)]}
. (7)

This expression can be obtained from equation (5) by either setting fa = f , Na = N and all
the other branch lengths to zero or using Na = a = N, fa = f + 1 with all the other branch
lengths set to zero. The mean-square end-to-end distance of the a block of a block co-polymer
molecule is equal to [6]

〈
R2〉 = Na

{
1 + 2u

[
ln Na − 1 +

Nb

Na
ln

(
Na + Nb

Nb

)
− Nb

2(Na + Nb)

]}
, (8)

with a similar equation for the b block. This form can also be recovered from equation (5) by
using the values of the parameters given in the introduction. The sizes of the branches of a
brush polymer with two junctions of equal length N has been found [5] to be〈
R2

Na

〉 = N
{
1 + 2u

[
ln(N) − 1 + (fa − 1)

(
ln 2 − 1

4

)
+ (fb − 1)

(
2 ln 3 − 3 ln 2 − 1

12

)]}
(9)

and
〈
R2

a

〉 = N

{
1 + 2u

[
ln(N) − 1 + (fa + f b − 2)

(
ln 2 − 1

4

)
+

(f a − 1)(fb − 1)

6

]}
. (10)

These expressions as well as the special case of regular combs with three branches given in
[2] can be found from equations (6).

The simplest structure for which the external and internal mean-square end-to-end
distances can differ is the H polymer. This polymer has four external and one internal
branch. One way to obtain a uniform (all branches of equal length N) H polymer from the
general expression (6) is to put a = Na = Nb = N, c = b = Nc = 0 and fa = fb = 2 with
fc = 0. The external and internal sizes can be predicted from equations (6a) and (6b). Realizing
that the F’s become zero when the length of an interacting part is zero, the following results
for the external,

〈
R2

e

〉
, and internal,

〈
R2

i

〉
, mean-square end-to-end distances are found:〈

R2
e

〉 = N + u[Fo(N) + 2F1(N, 0, N) + 2F1(N,N,N)] (11a)

and 〈
R2

i

〉 = N + u[Fo(N) + 4F1(N, 0, N) + 4F2(N, 0, N,N)]. (11b)

Evaluation of the F functions from equations (5) and employment of the fixed point value
u∗ = ε/16 yields〈

R2
e

〉 = N{1 + (ε/8)(ln N + 4 ln 3 − 4 ln 2 − 5/3)} (12a)

and 〈
R2

i

〉 = N{1 + (ε/8)(ln N + 4 ln 2 − 4/3)}. (12b)

These equations reproduce equations (3.6) and (3.7) in [5]. The ratio of these two equations is
equal to the difference of the two terms to order ε; the ln N dependence cancels and we obtain

r = 〈
R2

i

〉/〈
R2

e

〉 = 1 + (ε/8)(8 ln 2 − 4 ln 3 + 1/3). (13)

When d = 3, ε = 1 and thus r = 1.186, whereas when d = 2, ε = 2 and r = 1.371. These
renormalization group results compare very well with computer simulation. Gaunt et al
[7] studied r in two-dimensional H polymers using both exact enumeration and an inverse
restricted MC sampling technique. They found that the inner branch was more expanded than
the outer branches and that r = 1.36 ± 0.04. Bishop and Saltiel [8] employed Brownian
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dynamics with a bead-spring model and found an r value of 1.34 ± 0.02. Three-dimensional
lattice simulations by Lipson et al [9] reported the ratio for different lattice types: face-
centered cubic 1.22 ± 0.03, body-centered cubic 1.22 ± 0.03, simple cubic 1.22 ± 0.03 and
tetrahedral 1.21 ± 0.03. Kosmas et al [4] used MC on a simple cubic lattice to find that
r = 1.20 ± 0.05, and Bishop and Saltiel [10] found that r = 1.15 ± 0.08. Shida et al [11]
employed another MC algorithm to investigate this problem and determined that r was about
1.23.

The corresponding equations for TTT and HH polymers with equal branch lengths can
be obtained from the general structure of figure 1 if we put c = 0, Na = Nb = Nc = N, fa =
2, fb = 2 and fc = 1 or 2 for the TTT or HH polymers, respectively. Three different kinds of
branches are realized for these polymers which are denoted in figure 2 as follows: 1 (external),
2 (middle external) and 3 (internal) joining the two. By means of equation (6) we find for
the mean-square end-to-end distances of the three different branches, in a TTT polymer, the
expressions
〈
R2

1

〉 = N

{
1 +

ε

16
[Fo(N) + 2F1(N, 0, N) + 2F1(N,N,N) + 2F1(N, 2N,N)]

}
(14a)

〈
R2

2

〉 = N

{
1 +

ε

16
[Fo(N) + 2F1(N, 0, N) + 4F1(N,N,N)]

}
(14b)

〈
R2

3

〉 = N

{
1 +

ε

16
[Fo(N) + 4F1(N, 0, N) + 2F1(N,N,N) + 4F2(N, 0, N,N)

+ 4F2(N,N,N,N)]

}
. (14c)

and for the HH case:〈
R2

1

〉 = N

{
1 +

ε

16
[Fo(N) + 2F1(N, 0, N) + 3F1(N,N,N) + 2F1(N, 2N,N)]

}
(15a)

〈
R2

2

〉 = N

{
1 +

ε

16
[Fo(N) + 3F1(N, 0, N) + 4F1(N,N,N)]

}
(15b)

〈
R2

3

〉 = N

{
1 +

ε

16
[Fo(N) + 5F1(N, 0, N) + 2F1(N,N,N)

+ 6F2(N, 0, N,N) + 4F2(N,N,N,N)]

}
. (15c)

By means of equation (5) the values of the F functions are found to be equal to

Fo(N) = 2N [ln(N) − 1], F1(N, 0, N) = N

(
ln 2 − 1

2

)
,

F1(N,N,N) = N

(
4 ln 3 − 6 ln 2 − 1

6

)
,

F1(N, 2N,N) = N

(
−10 ln 3 + 16 ln 2 − 1

12

)
,

F2(N, 0, N,N) = N

3
, F2(N,N,N,N) = N

12

(16)

so that the final results for these two special polymers are given by
〈
R2

1

〉 = N

{
1 +

ε

8

[
ln N − 6 ln 3 + 12 ln 2 − 7

4

]}
= N

{
1 +

ε

8
[ln N − 0.02]

}
(17a)
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〈
R2

2

〉 = N

{
1 +

ε

8

[
ln N + 8 ln 3 − 10 ln 2 − 11

6

]}
= N

{
1 +

ε

8
[ln N + 0.02]

}
(17b)

〈
R2

3

〉 = N

{
1 +

ε

8

[
ln N + 4 ln 3 − 2 ln 2 − 8

6

]}
= N

{
1 +

ε

8
[ln N + 1.67]

}
(17c)

for the TTT polymer and

〈
R2

1

〉 = N

{
1 +

ε

8

[
ln N − 4 ln 3 + 9 ln 2 − 11

6

]}
= N

{
1 +

ε

8
[ln N + 0.01]

}
(18a)

〈
R2

2

〉 = N

{
1 +

ε

8

[
ln N + 8 ln 3 − 9 ln 2 − 25

12

]}
= N

{
1 +

ε

8
[ln N + 0.47]

}
(18b)

〈
R2

3

〉 = N

{
1 +

ε

8

[
ln N + 4 ln 3 − ln 2 − 5

4

]}
= N

{
1 +

ε

8
[ln N + 2.45]

}
(18c)

for the HH polymer. These equations predict that
〈
R2

1

〉
<

〈
R2

2

〉
<

〈
R2

3

〉
for both shapes and that

the 〈R2〉’s of HH polymers are larger than those of TTT polymers because of the interactions
from the extra interacting branch in the HH polymer.

3. Pivot Monte Carlo simulations

Tangent hard sphere polymer models have been simulated using a Monte Carlo pivot [12]
algorithm. Our polymer models are essentially the same as those previously employed by
Zweier and Bishop [13] for H polymers. In these models all the atoms making up the
monomeric polymer building blocks are grouped into a spherical ‘bead’. The distance between
two connected units is assumed to be a constant of magnitude one; e.g. adjacent beads are
tangent. If m is the number of units in a branch, then the total number of units in a TTT
polymer is N = 7 ∗ m + 1, whereas a HH polymer has N = 8 ∗ m + 1 units. We have simulated
systems with N ranging from 211 to 701 or 241 to 881 in the case of TTT or HH polymers,
respectively. In the TTT polymer, the center of the first-junction bead is assigned as the origin
of the XYZ coordinate system. The polymer is initially started with each of its seven branches
either horizontally or vertically directed from the junction beads. The first three branches
extend vertically in the positive direction, vertically in the negative direction and horizontally
in the positive direction from the first-junction bead, respectively. The third branch connects
the first two junctions. The second junction has one vertical and one horizontal branch. The
horizontal branch connects the second to the third junction. This junction in turn has two
vertical branches. An HH polymer has the same initial structure for these seven branches but
includes another vertical branch at the second junction (see figure 3).

The polymers are started in the X–Y plane. The beads are moved in continuous space by
the pivot algorithm. First, a random number is used to select one of the beads as a ‘pivot’. If
the first-junction bead is chosen as the pivot, then one of the first three branches is randomly
selected to be moved. Likewise, if the second-junction bead is selected, then either the third,
fourth or fifth branches will be moved in the case of a TTT polymer, or the third, fourth, fifth
or sixth branch will be moved for a HH polymer. In the case in which the third branch is
chosen, depending upon which junction was selected, either the first and second branches, or
the rest of the branches are also moved as a unit with the third branch. Similar movement
rules apply for the third junction.

Once a set of beads has been selected to be moved, we generate three randomly chosen
Euler angles and then move all selected beads in accordance with standard rotation equations

7
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Figure 3. An HH polymer with 25 beads.

(This figure is in colour only in the electronic version)
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Figure 4. The relaxation of the radius of gyration of an 881-unit EV HH comb from its initial
starting configuration.

[14]. If the pivot selected is a branch bead, then all the higher indexed beads on that branch
are rotated about the pivot bead. In the excluded volume (EV) case the new trial configuration
is accepted or rejected depending upon whether or not any beads overlap each other; no such
testing is performed in the non-excluded volume (NEV) case.

These bead movement procedures generate one configuration. The process is continued
for 5 × 106 moves but the first 1 × 106 moves are discarded before the averaging process begins.
These discarded moves represent the equilibration of the initial arbitrary configuration. Data
are collected at a spacing of 500 attempted pivot moves and the resulting random snapshots
of polymer configurations are used for data analysis. Figure 4 shows the equilibration of an
EV 881-unit HH polymer. The radius of gyration, S2, which is a global property, is followed
as a function of the number of attempted pivot MC moves. This quantity is computed by first
determining the center of mass. If Rj denotes the three-dimensional position vector of the
j th bead, then the center of mass coordinates, RCM, of a given configuration are as follows:

RCM = (1/N)

N∑
j=1

Rj , (19)

8
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and S2 is computed as

S2 = (1/N)

N∑
j=1

(Rj − RCM)2. (20)

Figure 4 demonstrates that the convergence toward the equilibrium state is rapid. The
horizontal line is the average value, 〈S2〉, over the total equilibration phase of 2000 cycles
with 500 moves each. Note that only the results for the first 50 cycles are plotted to emphasize
the convergence. Since the EV 881-unit polymer is expected to require the most cycles in
order to converge, the 2000 cycles employed in all of the simulations should be more than
sufficient to attain the equilibrium state.

In the NEV case the acceptance ratio is 1 and all configurations are accepted. In the EV
case the acceptance ratio ranged from 32 to 37% depending upon the polymer architecture and
N. In order to obtain additional independent configurations and thus enhance the statistical
quality of the data, 16 parallel runs employing different random number seeds were performed.

If R0 and Re denote the position vectors of a junction and of the end bead in an attached
branch, respectively, then the square of the end-to-end distance of that branch in a given
configuration is given by

R2 = (R0 − Re) · (R0 − Re). (21)

Each saved configuration is employed in the calculation. R2 was then averaged over the total
number of saved samples and the appropriate number of branches, to determine the values of
the mean and the standard deviation from the mean, employing the usual equations [15].

4. Results

TTT and H polymers in the NEV and EV regimes have been simulated. Table 1 presents
the end-to-end distance simulation results for all the systems investigated. The number in
parenthesis denotes one standard deviation in the last displayed digits. The error bars are
smaller in the case of external branches since there are more external branches to average over.
Note that the squares of the end-to-end distance of branches of type 1 and 2 (see figure 2) have
been averaged together. As expected, NEV polymers are much more compact than their EV
counterpart because excluded volume effects cause the polymer units to avoid each other and
thus expand the polymer.

It is well known that for large polymers, 〈R2〉 follows the scaling law [16]

〈R2〉 = C(N − 1)2v, (22)

where the coefficient C is a model-dependent amplitude but the exponent, 2ν, is universal for
a given d and universality class; 2ν has the value of about 1.20 in three dimensions for EV
polymers and the value of 1.00 in all dimensions for random walk, NEV systems.

Weighted nonlinear least-squares fits [15] to equation (21) using the 〈R2〉 data in
table 1 gave the values for the exponent, 2ν, of 0.993 ± 0.001 for both NEV TTT and HH
polymers. The corresponding EV systems had values of 1.208 ± 0.001 and 1.211 ± 0.001.
Given that our largest branches have only about 100 units, our simulation data exponents
agree reasonably well with the predicted values. Moreover, if one takes the large N limit in
equations (17) and (18) the mean-square end-to-end distances will scale as N1 + ε/8, predicting
an exponent of 1.125.

The r-ratios have been calculated from the end-to-end distance data in table 1 and the
errors in these quantities have been computed from the standard equation, relating the error in

9
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Table 1. Simulation data for 〈R2〉.

NEV EV

N Internal External Internal External

TTT
211 30.01 (3) 30.02 (4) 111.02 (9) 94.16 (9)
351 49.95 (11) 50.00 (6) 210.43 (21) 176.87 (9)
561 80.07 (12) 80.05 (8) 374.01 (47) 314.16 (26)
631 89.92 (20) 89.84 (8) 431.91 (50) 362.61 (37)
701 99.78 (10) 100.02 (9) 490.24 (42) 412.38 (39)

HH
241 29.98 (5) 30.00 (2) 117.50 (9) 95.42 (6)
401 49.86 (9) 49.96 (4) 222.26 (18) 179.38 (11)
561 69.90 (12) 70.02 (6) 335.91 (31) 270.72 (23)
721 89.90 (13) 89.95 (10) 457.58 (52) 367.55 (16)
881 109.69 (15) 110.15 (6) 583.98 (52) 468.12 (45)

Table 2. The ratio of internal to external end-to-end distances.

TTT-comb HH-comb

N NEV EV N NEV EV

211 1.000 (2) 1.179 (1) 241 0.999 (2) 1.231 (2)
351 0.999 (3) 1.190 (1) 401 0.998 (2) 1.239 (1)
561 1.000 (2) 1.191 (3) 561 0.998 (2) 1.241 (2)
631 1.001 (2) 1.191 (2) 721 0.999 (2) 1.245 (2)
701 0.998 (1) 1.189 (2) 881 0.996 (1) 1.248 (2)

a ratio to the error in the numerator and the error in the denominator. The simulation r-ratios
are listed in table 2.

The number in parenthesis denotes one standard deviation in the last displayed digit. It
is clear that in the NEV case there is no difference between an internal and an external branch
or between a TTT and HH polymer. If one examines polymers for which there are the same
number of units in a branch, m = 30, 50 or 90, it is also clear that the interior branches of
the HH polymer are more expanded than those of the TTT polymer because of the repulsions
from the extra branch. The computer results are in accord with the renormalization group
predictions. However, the computer results are for finite N whereas the theories are for infinite
N. The scaling law is given by

r = r∞(1 − K/N	), (23)

where r∞ is the value of the r-ratio for infinite N, K is a constant and 	 is the finite scaling
exponent. In the NEV regime 	 has a value of 1.0 and it is believed that for three-dimensional
EV polymers [17] it has the value of 0.47. To determine the value of r as N approaches infinity,
one plots r versus 1/N	 so that when N → ∞, 1/N	 → 0. The r value for infinite N can thus
be found by determining the intercept of this graph after fitting a weighted least-squares linear
line in 1/N	 to each set of data in the tables. The extrapolated r-ratios are found to be 0.998 ±
0.002 and 0.996 ± 0.002 for NEV TTT and HH polymers and 1.211 ± 0.003 and 1.267 ±
0.003 for corresponding EV polymers. Shida et al [11] found that EV HH polymers had an
r-ratio value of about 1.29. The NEV systems, as expected, show no expansion effects. The
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EV values compare well to RG predictions which are obtained from equations (17) and (18)
when d = 3 (ε = 1). The predicted ratio between the internal branch 3 and the average of the
other two, in TTT polymers is equal to

2
〈
R2

3

〉/(〈
R2

1

〉
+

〈
R2

2

〉) = 1 + (ε/8)(1.67) (24)

or 1.209. For the HH polymer the ratio is given by

2
〈
R2

3

〉/(〈
R2

1

〉
+

〈
R2

2

〉) = 1 + (ε/8)(2.45 − 0.24) (25)

or 1.276.

5. Conclusion

The mean-square end-to-end distances of a dendritic polymer with two generations and
various numbers and lengths of branches are investigated. Pivot Monte Carlo calculations
of continuum, tangent hard sphere models of the TTT and HH polymers have been used to
explore both the ideal and excluded volume regimes. The computer results are found to be
in good agreement with the first-order renormalization group results in ε = 4 – d. Interior
branches are expanded more and branches of the HH polymer are larger than those of the TTT
polymer because of the repulsions from the extra branch.
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